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Synopsis 

The stress-relaxation behaviors of molybdenum (Mo) and polyethylene are compared, espe- 
cially with regard to the role played by the internal stress level, in the relation F = 0.1( uo - u,). 
Here F is the maximum slope in the inflexion region of stress vs. In time curves (u vs. In t ) ,  u, is 
the initial stress, and uj is the internal (equilibrium) stress. Despite a significant difference in u, in 
the two materials, this relation was obeyed in both cases. The data for Mo are for room 
temperature and 90 K, those for low and high density polyethylene for room temperature only. 
Some of the data are reevaluated results of earlier measurements. The shape of the ui(c) curves is 
reminiscent of the u( c )  behavior for both M o  and polyethylene. The implications of the results 
for interpretation of the relaxation process in terms of current theoretical concepts is discussed, 

INTRODUCTION 

The flow behavior of metals and polymers (creep, stress-relaxation) is often 
described in terms of different theoretical concepts. For metals the theory of 
stress-aided thermal activation (SDTA) or a power law approach is commonly 
employed,'-3 while for polymers the flow is usually interpreted using the idea 
of a relaxation time spectrum (RTS).4s5 Despite the difference in the analyti- 
cal tools used, the relaxation (and creep) behavior of metals and polymers 
exhibits many fundamental similarities. Particularly significant in this connec- 
tion is a relation between the maximum slope of the stress-relaxation curve of 
almost any solid, irrespective of its structure, and the initial stress u $ ~ :  

= 0.1( uo - Ui) 

where u denotes the time-dependent stress, t the time, and ui the internal 
stress, i.e., the equilibrium stress level approached after sufficiently long times. 
Equation (1) is valid in temperature regions where no structural changes in 
the material occur; the scatter of the numerical constant 0.1 is about lo%.'' 
There are also counterparts to eq. (1) relating to the creep behavior of 
materials (see, e.g., Ref. 8). 
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Equation (1) shows that the internal stress is an important parameter with 
a significant influence on the shape of the relaxation ~ u r v e . ~ ? ~  

The present paper analyzes experimental results obtained in relaxation 
experiments with drawn, polycrystalline molybdenum wire. The behavior of 
Mo is compared to that of low and high density polyethylene (LDPE, HDPE) 
studied ~ l i e r . ~ 7  lo A central point in this evaluation is eq. (l), which is found 
to be obeyed by both Mo and PE. Special interest is devoted to the behavior 
a t  large deformations (above yield). 

The basic idea behind comparing Mo with PE is a significant difference in 
the internal stress level. In the light of the definition of the effective stress, 
entering eq. (1) as (ao - ui), choosing Mo and PE for this comparison thus 
appears to provide a useful platform for a further assessment of the validity of 
this equation. Some of the Mo data presented below are reevaluated results of 
measurements on Mo at RT and 90 K." 

THEORETICAL BACKGROUND 

Before reporting on the experimental results, we give a brief outline of the 
basic theoretical concepts used to describe the stress-relaxation behavior of 
solids. For polymers, this process is usually interpreted in terms of the RTS 
~ o n c e p t , ~ ' ~  giving a(t) as 

a( t )  = c o l w  H( 7)ewt/ '  d In 7 + cri 
- -oo 

Here c 0  is the initially applied constant strain, H ( 7 )  the distribution of 
relaxation times T, and ui the internal stress. This approach is formal only and 
gives no insight into the flow mechanism behind the H ( T )  function. 

For metals and other crystalline solids, the SDTA theory is the commonly 
used tool. The basic equation is as follows2: 

da 

dt 
d = - = -Aexp[o(a - ai)/kT] (3) 

where A is a constant (preexponential) factor, o the activation volume, K 
Boltzmann's constant, and T the absolute temperature. The difference be- 
tween the actual applied stress a and the internal stress ui is often called the 
effective stress, a*. 

Equation (3)  corresponds approximately to a straight line in a a(1ogt) 
diagram. It is often found to be valid at  shorter relaxation times (higher 
stresses), while at  longer times a deviation from eq. (3)  is observed. This latter 
region of the relaxation curve can often be described by a power law relation2 

U = -B(u - ~ i ) ~  (4) 

where B and n are constants, their values depending on the nature of the 
material and the temperature. The transition from the exponential law 
behavior (SDTA) to a power law dependence occurs at a certain critical stress, 
at,, given by9 

( utr - q)/( a, - ui) = n/10 (5) 
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Neither of the theoretical approaches [eqs. (2)-(4)] can, however, be reconciled 
with the experimentally well-documented numerical constant of eq. (1). Re- 
cently a cooperative model has been suggested that accounts for the constant 
0.1 in eq. (l).l2?l3 This theory is based on a two-level model, where flow units 
are raised to an upper energy level during the initial straining of the solid. 
During the return to the lower level, phonons are emitted which stimulate 
transitions of unrelaxed flow units. In this way, multiple transitions of varying 
size may occur, producing in a natural fashion a distribution of relaxation 
times. The relaxation process is described by 

where K is a constant, r is a relaxation time, + ( x )  the digamma function, and 
/3 = (-  6~6$/7r~)l/~.  The parameter P is related to the maximum slope of F 
in eq. (1) as 

F =  (InP + y)-'(uo - ui) (7) 

where y is Euler's constant (0.5778. . . ). The constant 0.1 in eq. (1) corresponds 
to log( - K@) 5: 8.4. It has also been shown that there is an upper limit (s,) 
to the size of the multiple transitions, and that this explains the value of the 
constant of proportionality in eq. (l).13 The cooperative model may formally 
be transformed into a discrete relaxation time distribution H( r )  given by (cf. 
Ref. 14) 

for r /s ,  I rs I r 

= o  otherwise (8) 

with the relaxation times given by 

r ,  r/2,7/3,. . . , r /s ,  (9) 

and s being an integer varying from 1 to s,. The cooperative model may thus 
be said to have a spectral character. 

It should be mentioned that the cooperative model describes the exponen- 
tial law region (SDTA region) of the relaxation curve but not, at  this stage, 
the power law region. The ability of eq. (6) to describe the experimental 
relaxation behavior of a wide range of materials is demonstrated in Ref. 15. 

EXPERIMENTAL 

Materials 

The molybdenum wire used in this work was 99.95% pure. I t  was produced 
by hot drawing to a diameter of 0.4 mm, producing a highly oriented grain 
structure. Wide angle X-ray diffraction revealed that the fiber axis was [110]. 
The grain diameter of the longitudinal section was ca. 2-3 pm. No further 
treatment of the wires was performed prior to the relaxation experiments. 
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Methods 

The stress relaxometer used has been described earlier.16 The measurements 
were carried out a t  25 + 0.1"C and the initial strain rate was 8 X s-'. 
Some experiments with a lower strain rate (6.7 X l o p 5  s-') were also per- 
formed. The effective gauge length of the wires was 80 m. The maximum 
deformation ( c o )  was about 0.7%. The combined elastic stiffness of the Mo 
wire and the relaxometer amounted to 270 GPa. Thus the relaxometer can be 
regarded as sufficiently stiff. The additional strain induced during the relaxa- 
tion process was accordingly small in comparison with the initially applied 
strain c o .  

RESULTS AND COMMENTS 

Stress-Strain Behavior 

Figure 1 shows the stress-strain curves of the Mo wires a t  room tempera- 
ture. The strain rate was 8 X s-'. The curves are rather linear up to a 
strain level of ca. 0.15% (corresponding stress ca. 350-400 MPa). The relaxa- 
tion experiments were performed in both the linear and the nonlinear regions. 

The Shape and the Position of the Stress-Relaxation Curves 

Figure 2 shows examples of stress-relaxation curves given as u/oo vs. log t, 
for the Mo wires at  three different initial deformations c o :  0.15, 0.26, and 
0.57%. An increase in c o  shifts the relaxation curves towards shorter times; 
this shift may be interpreted in terms of a strain dependence of the constants 
A or B of eqs. (3) and (4). It is, however, not linked to a cutoff of the 
relaxation time spectrum due to a longer initial straining time since this 
normally produces a shift, in the opposite direction. Figure 2 also includes 
relaxation data for high density polyethylene (HDPE) obtained at  large 
deformations." With HDPE a shift to shorter times of the relaxation curves 
with increasing values of co  is observed; with low density polyethylene 
(LDPE) the shift is towards longer times.'O 

E ,  % 
Fig. 1. Stress-strain curves at 25°C for the Mo-wire, strain rate was 8 X s- '. 
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1.0- 

Log t , s 
Fig. 2. Stress-relaxation curves for (.) Mo and (0) HDPE" at room temperature given as 

u/u,,(log t ) .  Key for initial elongation ( W ) :  (1) 0.15; (2) 0.36 (3) 0.57; (4) 1.5; (5) 9.6. 
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With regard to the relaxable stress there is a striking difference between the 
behavior of Mo and HDPE. As can be seen in Figure 2, this stress appears to 
be substantially smaller for Mo than for HDPE, i.e., the stress approaches 
asymptotically higher values of u/uo at longer times for Mo than for HDPE 
(and for LDPE). This is due to a difference in the internal stress level, ui. The 
influence of ui on the shape of the relaxation curves can be eliminated by 
plotting the curves as (u  - ui)/( a, - ui) vs. log t. (The determination of ui is 

Log t , s 
Fig. 3. Stress-relaxation curves for Mo given as u*/u$ vs. log t .  Key for initial elongation 

( W ) :  (1) 0.51; (2) 0.26; (3) 0.10. 



1380 

m a 
H 

b- 
!2 
$ 1 -  
-1 

HAGSTROM, KUBAT, AND RIGDAHL 

2- 

i I I I I I I 

1.0 

6 
b 

I 1 I 

0-0-0-0-0 
--0-0- o--o-o- 

..................... ................. 

-0 
- -  0-0-J 

* - *  .. - 0 . .  .. * a .  

a .  
T .. 

1 I I 1 I I 

I I 1 I I I 
-1 0 1 2 3 4 

0 
-2 

Log t , s  
Fig. 4. log(o - u j )  vs. log t for Mo at 25°C. Initial deformation 0.43%. 

discussed in a following section.) This is shown in Figure 3, and, as can be 
seen, the curves are approximately linear at  higher values of u*/u$ (shorter 
times). In this region the curves can be described by the SDTA theory or the 
cooperative model, eq. (6). Again, there is a shift of the curves towards shorter 
times with increasing E,,. 

At longer times the relaxation curves are better described by the power law, 
eq. (4). This is shown in Figure 4, where log(u - ui) is shown as a function of 
logt. The curves are linear at  longer times in agreement with eq. (4). The 
values of the exponent n in the power law is ca. 7 irrespective of the applied 
strain E,,. The corresponding values for HDPE and LDPE are 5-6 and 5, 
respectively." The n values for Mo are in good agreement with those 
reported by Gupta and Li,17 who found a constant value of 7.5 in the strain 
interval 1-12%. It may also be added that Prekel and Conrad'* found the 
value 6.4 for the dislocation velocity-stress exponent for Mo at room tempera- 
ture. 

Log t , s 

Fig. 5. Stress-relaxation curves for Mo obtained at two different initial strain rates: (0) 
8 x and (0)  6.7 X 10W5 s-'. Initial deformation 0.578 in both cases. 
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Figure 5 shows the effect of the initial strain rate i on the position of the 
relaxation curves along the time axis. A decrease in strain rate from 8 X lop3 
s-l to 6.7 x lop5 s-' shifts the curve to longer times. The initial deformation 
c o  was 0.57% in both cases. The apparent shift of the curves to longer times is 
in agreement with the hypothesis of a cutoff of the initial parts of the 
relaxation time spectrum H( T)." 
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Internal Stresses 

In accordance with previous w ~ r k s , ~ . ' ~  we have found that the internal 
stress is identical with the stress level approached in the relaxation experi- 
ment at very long times. The ui values may be evaluated by the method 
proposed by Li,20 based on plotting - du/d log t vs. u and then extrapolating 
the curve to zero stress rate. The intersection with the stress axis is taken as 
the internal stress. Figure 6 shows ui as function of E,,. The curve is rather 
similar to the U(E)  curve for the Mo wire. It is linear below co  = 0.15% and 
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markedly nonlinear at higher deformations. The u, value is thus very closely 
connect.ed to  the deformation to, and the curve passes through the origin. The 
ui(co) curve for HDPE’O is also included in Figure 6. Again, there is a 
similarity between the curves for Mo and HDPE. Note, however, the dif- 
ference in deformation. 

There is, on the other hand, a clear difference between Mo and HDPE in 
another respect. For Mo, u, is significantly higher than the corresponding 
effective stress u* = u - ui (see Fig. 6) .  For HDPE and LDPE the reverse is 
true, the internal stress amounting only to ca. 20% of the applied stress.” 
Thus the viscoelastic character is not very pronounced for Mo compared with 
polyethylene, a t  least a t  room temperature. It should be noted that for co  
below ca. 0.1% the effective stress u* for Mo is virtually zero. The Mo wire 
thus does not exhibit any relaxation at  low deformations, and the internal 
stress is thus identical to the initially applied stress a,. This may indicate that 
the term “internal stress” in this context is not very adequate, since i t  is the 
stress that the sample can sustain over an extended period of time. This is 
true for metals as well as polymers. 

In Figure 6 a few ui values determined using relaxation with a low initial 
strain rate (6.7 x s-’) are included. The u, values are of the same order 
as those obtained at  higher i, but the u* values are significantly lower a t  the 
low strain rate (Fig. 6).  This is in agreement with the idea that some part of 
the stress relaxes during a slow straining, i.e., the relaxation spectrum is cut 
O f f .  

The Maximum Slope F of the a(ln t )  Curves 

Figure 7 shows the maximum slope F = (- du/d In t),,, of the relaxation 
curves for Mo vs. uo and a$ (= uo - ui).  The region of the maximum slope 
coincides with the linear region of the u(1og t )  curves shown in Figure 2. The 
F(uo) curves appear to be composed of two straight segments. The intersec- 
tion between those straight lines occurs a t  ca. 350 MPa, which is close to the 
linearity limit of the stress-strain curve (Fig. 1). The slight change in relaxa- 
tion behavior is hardly surprising since also the internal stress varies with the 
applied strain in a nonlinear fashion. A similar change in the F( uo) curve has 
been reported for HDPE” and some bcc metals2’ Again, i t  should be noted 
that below ca. 100 MPa, Mo does not relax a t  all, i.e., F/uo = 0. 

When F is plotted vs. u$ = uo - u,, a single straight line passing through 
the origin is obtained (Fig. 7) .  The slope of this line is 0.105 which is in very 
good agreement with eq. (1). It should be underlined that a straight line 
relation is obtained despite the fact that both the linear (elastic) and nonlin- 
ear portions of the u(c)  curve for Mo are contained in this graph. 

Stress-Relaxation of Mo at 90 K 

In an earlier work,” the stress-relaxation behavior of Mo a t  90 K (- 183°C) 
has been reported. I t  may be interesting to reanalyze these data to obtain 
more information regarding the internal stresses and their effect on the 
relaxation behavior. By applying the Li method to the relaxation data given 
in Ref. 11, ui and u$ may be determined as a function of co. This is shown in 
Figure 8. The internal stress varies approximately linearly with c o  up to ca. 
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0 500 1000 

O o . O ~ ,  MPa 
Fig. 7. The maximum slope F = ( -du /d  In t)mm vs. (0) uo and (0) u z  for Mo at 25°C. 

E, 9 % 

Fig. 8. The (0) internal and (0) effective stress vs. co for Mo at 90 K ( -  183°C). 
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0.6%, which is a parallel to the a(€) behavior of Mo at  90 K. The internal 
stress level is also higher at  90 K than at  298 K (25”C), but the maximum 
effective stresses are of the same order, ca. 200 MPa. For Mo the relaxable 
stresses are thus not markedly affected by the temperature, while u, varies in 
a manner related to the U(E) properties. For polyethylene, however, ui ap- 
peared to be rather insensitive to changes in temperat~re,~ although the 
temperature range was significantly smaller in this case (about 45°C). 

The data in Figure 8 also show that below approximately 0.25% strain Mo 
does not relax, i.e., u* = 0, and the specimens behave like elastic solids. 
Further, it  is evident that the relaxation is initiated at lower c0  values than 
those corresponding to the linearity limit of the U(E) curves. This can also be 
seen from the relaxation behavior at  25°C (Fig. 6) and, even more clearly, at  
low temperatures. Stress-relaxation thus occurs at  stress levels below any 
yield point in the U(E) curves (microplasticity). 

The F/u$ ratio for Mo at 90 K is 0.098,” which is a strong support for the 
temperature independence of eq. (1). 

FINAL REMARKS 

The stress-relaxation behavior of polycrystalline molybdenum appears to 
fit well into the general pattern given by eq. (l), according to which the slope 
of the u(1og t )  curves is proportional to uo - ui. In this case, ui constitutes a 
substantial part of a,, in contrast to polymers like polyethylene, where the 
opposite is true. Despite this difference, eq. (1) is obeyed in both cases as is 
evident from the data presented above. Although these results are only a 
small part of the material compiled in order to provide support for eq. (l), 
they deserve special attention in view of the large variability of u, encoun- 
tered in this case. 

Apart from these similarities between Mo and PE, there are also some 
differences worth mentioning. For instance, the Mo samples exhibit no flow 
when strained below a critical level (Fig. 7). For PE and other polymers, such 
a level does not exist, there being always measurable flow also at  the lowest 
stresses. 

In both the RTS and the SDTA descriptions as well as in the cooperative 
model, the use of an internal stress concept is necessary for a correct descrip- 
tion of the observed flow behavior. The term “internal” might, however, be 
superfluous since the corresponding stress simply, in the case of stress-relaxa- 
tion, is the nonrelaxable stress level, i.e., that part of the initial stress which is 
stable toward thermal fluctuations on a long-term basis. 
As mentioned above, neither the RTS nor the SDTA theory can explain eq. 

(1). The RTS theory, being a linear approach, complies however with linearity 
inherent in eq. (l), i.e., the stress rate d varies linearly with a change in uo, 
while the SDTA does not. The cooperative model appears to provide sound 
physical mechanism for describing the flow process, and it may also provide 
an explanation to the constant of proportionality in eq. (1). The cooperative 
model can also be said to be of a spectral character, which means that it 
complies with the above-mentioned linearity. 

The SDTA model, given by eq. (3), cannot explain the experimentally 
observed linear relation between d and a,. Such a linearity can however be 
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imposed on the SDTA theory by using eq. (1) and the relation' 

F = kT/u (10) 

The nonlinearity of SDTA, expressed as d(a), may now, indeed, be apparent 
only, at least when it comes to the description of relaxation processes which 
do not shift their position along the (log t)-axis when a. is changed. If this is 
the case, the process may be considered linear with regard to ao, despite the 
exponential character of the &(a) relation [eq. (3)]. The source of the rather 
common misinterpretation of the significance of this equation is the fact that 
d(a) is supposed to be a unique relation between d and u, a given stress 
always producing the same d value. This appears, however, to be untrue. 
Instead, one has to distinguish the role of u during a single relaxation process 
from that of varying ao, i.e., the role of a when several processes at  varying uo 
are considered. While &(a) during relaxation at  a given uo value certainly is 
exponential, as required by the linearity of u vs. logt, there is nothing to 
prevent the process from being linear with regard to uo. This is also what LVE 
requires. As a matter of fact, LVE allows any nonlinear d(a) relation during 
the relaxation to describe the process, since such d(a) relations are nothing 
more than transformations of the relaxation function of LVE into a d(u) 
form. Only when the relaxation function is given by exp( - kt) is the corre- 
sponding d( a)  relation linear. 
As is well known, such behavior is never observed in practice, all commonly 

observed relaxation functions giving rise to nonlinear 6( a) relations. Although 
they offer physically plausible explanations to the flow mechanism in solids 
when considering the time variation of a within a single relaxation process, it 
appears an inadmissible generalization to extend their applicability also to the 
variation of ao. This latter parameter simply seems to produce a linear 
scale-up of the process in the sense of LVE. There are, of course, numerous 
instances of a shift of the relaxation curves towards shorter times, implying 
that u0 operates in the sense of SDTA, but in the case of low stresses this is 
generally not true. In Ref. 22 this dependence was resolved by introducing two 
d( a) exponentials, one of them operating via a according to eq. (3), the other 
being the equivalent of the relaxation function in the sense of LVE, scaling 
linearly with a,,. The first term takes care of the shift of the relaxation curves 
along the (log t)-axis as uo is varied. 
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